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ABSTRACT

The integral observables for model-independent detections of
Abelian Z ′ gauge boson in e+e− → µ+µ−(τ+τ−) process with
unpolarized beams at the ILC energies are proposed. They are
based on the differential cross-section of deviations from the stan-
dard model predictions calculated with a low energy effective La-
grangian and taking into consideration the relations between the
Z ′ couplings to the fermions. The cross-section exhibits angu-
lar distribution giving a possibility for introducing one- or two
parameter observables which effectively fit the mass mZ ′, the
axial-vector a2Z ′ and the product of vector couplings vevµ(vevτ).
A discovery reach for the Z ′ is estimated for two of introduced
observables. Determination of the basic Z ′ model is discussed.
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INTRODUCTION

Searching for new heavy particles beyond the energy scale of the standard model (SM) is
one of the main goals of modern high energy physics. Nowadays data of Tevatron
and the LHC are analised. Discoveries of these experiments will be further
investigated in details at the ILC which will have energies of ∼ 500 − 1000 GeV in
the center-of-mass of beams.

One of expected heavy particles beyond the SM is Z ′ gauge boson which is related
with an additional Ũ(1) group. It enters as a necessary element numerous GUT models
like SO(10), E6 as well as superstrings, extra dimensions, etc.

Searches for this particle have been established already within the LEP data in ei-
ther model-dependent or model-independent approaches, and the Tevatron data. Modern
model-dependent measurements constrain that the mass mZ ′ to be larger than 2.5 − 2.9
TeV [ATLAS, CMS].

So, at the ILC experiments the Z ′ will be investigated as a virtual state.
At present about hundred Z ′ models are discussed in the literature. In model-dependent

searches established, only the most popular ones such as LR, ALR, χ, ψ, η, B - L, SSM,
have been investigated and the particle mass estimated.

Most investigations devoted to model-dependent searches at the ILC deal with the
polarized beams and corresponding observables are introduced.



As complementary way, a model-independent approach is very desirable. In
this method not only the Z ′ mass but also the couplings to the SM fermions are unknown
parameters which must be fitted in experiments. Estimations of couplings can be further
used in specifying the basic Z ′ model.

Usually, the couplings are considered as independent arbitrary numbers. However, this
is not the case and they are correlated parameters, if the basic model is renormalizable
one. Hence, correlations follow and the amount of free low energy parameters reduces.
Moreover, the correlations between couplings influence kinematics of the processes that
gives a possibility for introducing the specific observables which uniquely pick out the
virtual Z ′ boson. The noted additional requirement assumes searching for new particles
within the class of renormalizable models. In other aspects the models are not specified. In
what follows, we will say ”model-independent approach” in the case when either the mass
or the couplings must be fitted.

In the present talk we search for the Abelian Z ′ boson coming from the extended
renormalizable model. There are numerous models of such type. In what follows, we say
Z ′ boson for the Abelian one. We also assume, as usually, that the SM is the subgroup
of the extended group and therefore no interactions of the type ZZ ′W+W− appear at a
tree-level.



We analyze the deviations of the differential cross-sections for the annihilation
process e+e− → µ+µ−(τ+τ−) from the SM predictions considered at center-of-mass
energies 500 - 1000 GeV. We introduce new observables, A(E,mZ ′), giving a possibility
for estimating both the axial-vector coupling of the Z ′ to the SM fermions aZ ′ and the
mass mZ ′, and the observable V (E,mZ ′), for fitting the products of vector couplings vevµ,
vevτ and the mass mZ ′.

At ILC energies and expected particle masses, distinguishable properties of the factors
at couplings entering the cross-section are observed that gives a possibility for introducing
noted observables. Their values can be used in subsequent determination of the basic
Z ′ model. Moreover, the ratio of A(E,mZ ′) (or V (E,mZ ′)) taken at different energies
depends on the mZ ′, only and may be used as new observables for model-independent
estimation of it.



Z’ GAUGE BOSONS

At low energies, Z ′ boson can manifest itself as virtual intermediate state through
the couplings to the SM fermions and scalars. Moreover, the Z boson couplings are
also modified due to a Z–Z ′ mixing. Couplings can be described by adding new G̃(Z ′)-
terms to the electroweak covariant derivatives Dew in the Lagrangian

[Sirlin(1989),Degrassi(1987)]
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where summation over all the SM fermions is understood. In these formulas, g, g′, g̃ are the
charges associated with the SU(2)L, U(1)Y , and the Z ′ gauge groups, respectively, σa are
the Pauli matrices, Qf denotes the charge of f in positron charge units, Yϕ is the U(1)Y
hypercharge, and YfL = −1 for leptons and 1/3 for quarks. In case of Abelian Z ′, the

ỸfL = ỸfLdiag(1, 1) and Ỹϕ = Ỹϕdiag(1, 1) are diagonal 2×2 matrices with corresponding
coupling factors. These generators do not influence the SU(2)L symmetry.



The Z–Z ′ mixing angle θ0 is determined by the coupling Ỹϕ as follows

θ0 =
g̃ sin θW cos θW√

4παem

m2
Z

m2
Z ′
Ỹϕ +O

(
m4

Z

m4
Z ′

)
, (3)

where θ0 is the SM Weinberg angle, and αem is the electromagnetic fine structure con-
stant. There are precision constrains on θ0 value, coming, in particular, from the LEP1
experiments. It is one of the main parameters of the Z ′ physics.

Below, we will use the Z ′ couplings to the vector and axial-vector fermion currents
defined as
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2
, af = g̃
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The Lagrangian (1) leads to the following interactions between the fermions and the Z
and Z ′ mass eigenstates:
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where f is an arbitrary SM fermion state; vSMfZ , a
SM
fZ are the SM couplings of the Z-boson.



As it occurs, if the extended model is renormalizable,the relations between the
couplings hold [Gulov, Skalozub (2000)]:

vf − af = vf∗ − af∗, af = T3f g̃Ỹϕ. (6)

Here f and f ∗ are the partners of the SU(2)L fermion doublet (l∗ = νl, ν
∗ = l, q∗u = qd

and q∗d = qu), T3f is the third component of weak isospin. They also can be derived by

imposing the requirement of invariance of the SM Yukawa term with respect to the Ũ(1)
gauge transformations. Therefore the relations (6) are independent of the number of scalar
field doublets.

The couplings of the Abelian Z ′ to the axial-vector fermion current have a universal
absolute value proportional to the Z ′ coupling to the scalar doublet. Then, the Z–Z ′

mixing angle (3) can be determined by the axial-vector coupling. As a result, the number
of independent couplings is significantly reduced. Because of the universality we will omit
the subscript f and write a instead of af .



CROSS-SECTION FOR Z ′ DETECTIONS

Let us consider the process e+e− → l+l− (l = µ, τ) with the non-polarized initial and
final fermions.

Two classes of diagrams have to be taken into consideration. The first one includes the
pure SM graphs. The second class includes heavy Z ′ boson as the virtual state described
by the effective Lagrangian (5) and the scalar particle contributions. We assume that
Z ′ is decoupled and not excited inside loops at the ILC energies. The tree-level diagram
e+e− → Z ′ → l+l− defines a leading contribution to the cross-section. The cross-section
includes the contribution of the interference of the SM amplitudes with the Z ′ exchange
amplitude (having the order ∼ a2, vfa) and the squared of the latter one (of the order
∼ a4, v4f). The last contribution can be neglected at far from resonance energies. The
radiative corrections to the Z ′-exchange diagram are incorporated in the improved Born
approximation.

The deviation of the differential cross-section for the process can be written in the form
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Here, z = cosθ is the cosine of scattering angle θ. This cross-section accounts for the
relations (6) through the known dimensionless functions fi(z), since the coupling Ỹϕ (the
mixing angle θ0) is substituted by the axial-vector coupling a which is universal parameter.



OSERVABLES FOR a2 AND mZ ′

Let us investigate the behavior factors fi(z) assuming that couplings a, vf have the
same order of magnitude.

For definiteness, in Figs. 1, 2 we show the behavior for energy E = 500 GeV in
the e+e− center-of-mass and the mass mZ ′ = 2500, 3000 GeV. Below, we take the ratio
ΓZ ′/mZ ′ ∼ 0.1 (the results for narrow resonances are similar at considered energies).

The function f1(z) is presented as solid line, the f2(z) is shown as dot-dashed one and
the functions f3,4(z) are shown as dashing line. The f3,4(z) coincide The factors f3,4(z)
are suppressed by two orders of magnitude as compared to the f1(z) and f2(z).

This behavior makes reasonable introducing the integral observable which
picks out the contribution coming from the coupling a2 in Eq. (7).
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Fig.1 Behavior of factors f1(z), f2(z), f4(z) for mZ ′ = 2500 GeV, width
ΓZ ′ = 250 GeV for E = 500GeV
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Fig.2 Behavior of factors f1(z), f2(z), f4(z) for mZ ′ = 3000 GeV, width
ΓZ ′ = 150 GeV for E = 500GeV



Really, we can integrate f2(z) in the intervals (−1 < z < −0.2) (where the function
f1(z) is positive) and (−0.2 < z < z∗) (where f1(z) is negative) and specify the limit z∗

in such a way that the difference of the integrals turns to zero:

(

−0.2∫
−1

−
z∗∫

−0.2

)fµµ2 (z)dz = 0. (8)

The upper limit of integration equals to z∗ = 0.489 for a wide interval of both the
mass mZ ′ and beam energies E. It is also important that the function f1(z) changes
its sign at the point z = −0.2 for all energies and masses investigated.

On these grounds we introduce the observable for model-independent estimating of
the a2 and mZ ′:
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( −0.2∫
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−
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−0.2

)(dσ
dz

− dσSM

dz

)
dz. (9)

Here, the lower and upper limits of integration are theoretical bounds. They can be
substituted by other ones corresponding to actual set up of experiments.



Table 1: Observable A(E,mZ ′) for the interval [-0.9,0.406]
Energy mZ ′ ΓZ ′ f1(z) f3,4(z) f2(z)

500 2500 250 6.98371 · 10−7 −7.34139 · 10−9 1.1672 · 10−9

500 3000 300 6.59927 · 10−7 −6.92419 · 10−9 −8.61322 · 10−11

1000 2500 250 1.51413 · 10−6 −1.58729 · 10−8 −3.87173 · 10−9

1000 3000 300 1.02365 · 10−6 −1.67314 · 10−8 −2.11544 · 10−9

We present the results of calculations in the Tables 1 and 2
In first, second and third columns the energy, mass and width values (expressed in GeV)

are given, correspondingly. In the fourth column the contribution coming from fµµ1 (z) is
adduced. In the fifth and sixth columns the values of the contributions coming from the
factors fµµ3,4(z), f

µµ
2 (z) Eq.(7) are shown.



Table 2: Observable A(E,mZ ′) for the interval [-0.9,0.406]
Energy mZ ′ ΓZ ′ f1(z) f3,4(z) f2(z)

500 2500 250 6.98371 · 10−7 −7.34139 · 10−9 1.1672 · 10−9

500 3000 300 6.59927 · 10−7 −6.92419 · 10−9 −8.61322 · 10−11

1000 2500 250 1.51413 · 10−6 −1.58729 · 10−8 −3.87173 · 10−9

1000 3000 300 1.02365 · 10−6 −1.67314 · 10−8 −2.11544 · 10−9

A(E,mZ ′) is determined by two couplings a2 and avµ. The efficiency of the
observable is determined from the relation:

κA =
|fµµ1 |

|fµµ1 |+ |fµµ3,4 |
. (10)

Here the quantities |fµµi |, i = 1, 3, 4, mark the integrals

(
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)fµµi (z)dz > 0. (11)

From Tables 1, 2 κA = 0.9896 for all the given energy and mass values.



OSERVABLES FOR ESTIMATION OFmZ ′

An application of A(E,mZ ′) (9) for the model-independent determination of the
mass mZ ′.

Consider the ratio Rexperim
A = A(E1,mZ′)

A(E2,mZ′)
of two cross-sections with close energies E1

and E2 = E1 +∆E and write

Rexperim
A =

A(E1,mZ ′)

A(E2,mZ ′)
= 1− ∂ lnA(E1,mZ ′)

∂E1
∆E. (12)

As a theoretical curve Rtheory
A the function fµµ1 from Eq.(7) has to be substituted in Eq.(12)

instead of A(E1,mZ ′). As a result, we obtain the observable depending on mZ ′, only.
Hence, the value of the mass can be estimated by means of a standard χ2 method. The
value ∆E can be taken as the difference between the closer beam energies of experiments.



OSERVABLES FOR vevµ (vevτ)

As we see from the plots and Tables 1, 2, to exclude the contribution of the a2-
dependent term we have to integrate the differential cross-section ∆σ(z) (7) over z in
the interval (−1 ≤ z ≤ zv) and specify the upper limit from the requirement

zv∫
−1

fµµ1 (z)dz = 0. (13)

Hence, we obtain the observable Veµ(E,mZ ′) for estimation of vevµ (or vevτ)

Veµ(E,mZ ′) =

zv∫
−1

(
dσ

dz
− dσSM

dz
)dz, (14)

where the limit zv depends on the energy E and mass mZ ′.



Let us adduce the values of zv and Veµ(E,mZ ′) .

Table 3: Upper limit zv and the value Veµ(E,mZ ′)

Energy mZ ′ ΓZ ′ zv Veµ ·m2
Z ′ A · Veµ ·m2

Z ′

500 2500 250 0.567466 −1.50333 · 10−6 1.65644 · 10−8

500 3000 300 0.5675 −1.42282 · 10−6 1.56777 · 10−8

1000 2500 250 0.570118 −3.31411 · 10−6 3.52717 · 10−8

1000 3000 300 0.570115 −2.24064 · 10−6 2.38447 · 10−8

In Table 3, in the fourth column the cosine of boundary angles is adduced. In the last
two columns the corresponding values of Veµ ·m2

Z ′ and the contributions of the factor at
the product avµ are presented.

The efficiency of the observable V (E,mZ ′) is determined analogously to the κA (10)
according to the condition

κV =
|fµµ2 |

|fµµ2 |+ |fµµ3,4 |
, (15)

where |fµµi |, i = 2, 3, 4, mark the integrals over the interval −1 < z < zv. The efficiency
is estimated as κV = 0.9891.

The negative sign is also the distinguishable signal of the virtual Z ′ boson.



The accuracy of possible estimates depends on both theoretical and experimental
uncertainties.

The former account for the accuracy of the cross-section calculation, which includes
the SM terms and the additional terms coming from the low energy effective Lagrangian
Eq.(1). The latter depend on the precision of measurements.

The accuracy of measurements of the introduced observables A(E,mZ ′), Veµ(E,mZ ′)
can be related with the accuracy of measurements of the total cross-section and the forward-
backward asymmetry.

As it was estimated for LEP experiments, the theoretical errors is of the order 2 %.
So that we assume that not larger values will be for the ILC. At considered energies, the
contributions of the omitted terms ∼ a4, (vevµ)

2 are estimated as 0.1 %. According to data
in Tables 1-3, the neglected contributions coming from the factors f3, f4 are estimated as 1
- 1.5 %. Hence, we estimate the theoretical errors as 3-4 %. The accuracy of measurements
of the leptonic cross-sections is expected to be high.

Thus, the couplings and the mass mZ ′ can be precisely measured either from
the differential cross-sections or from data on the total cross-sections.



DISCUSSION

The factors entering the differential cross-section (7) exhibit features giving a possi-
bility for introducing the observables (9) and (14) dependent mainly on only one coupling
a2, or vevµ (vevµ), correspondingly, and the mass mZ ′. So that all these parameters can
be estimated within one- or two parameter fits.

We also obtain the discovery reach for Z ′ with taking into consideration the
observable A(E,mZ ′) (9) and the axial-vector coupling a2 estimated from the data set of
LEP experiments and derived already: mDRA

Z ′ = 4.4 TeV.
Next what can be verified is family independence of vf couplings. The ratio

Dµτ
v =

V (E,mZ ′)µ
V (E,mZ ′)τ

=
vµ
vτ

(16)

depends on the coupling values and has to be unit in the case of the family independence.
It can be simply checked.

It is essential that signature of the observables - positive sign of A(E,mZ ′) and
negative sign of V (E,mZ ′) - is the signal of the Abelian Z ′ boson.

The found values of the couplings can be compered with the values for the specific
renormalizable Z ′ models. As a result, the number of the perspective candidates can be
considerably reduced.


